Abstract

Transient Receptor Potential (TRP) channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV) subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

Highlights

  • Animals adapt to environmental temperature changes by sensing both their body and ambient temperatures

  • We identified several novel TRP vanilloid (TRPV) genes that have not been found previously and discovered evolutionary flexibility of the TRPV3 gene during vertebrate evolution

  • The western clawed frog and mammals acquired opposite temperature sensitivity of TRPV3 channels to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to thermal environments during evolution

Read more

Summary

Introduction

Animals adapt to environmental temperature changes by sensing both their body and ambient temperatures. Nine temperature receptors have currently been identified and all of them belong to the transient receptor potential (TRP) cation channel superfamily and are called ‘‘thermoTRPs’’. These nine thermoTRPs are further classified into three subfamilies: four belong to the TRP vanilloid subfamily (TRPV1-TRPV4), four to the TRP melastatin subfamily (TRPM2, TMPM4, TRPM5, and TRPM8) and one to the TRP ankyrin subfamily (TRPA1) [1,3]. Phylogenetic analysis of vertebrate thermoTRP homologs revealed that the genes encoding TRPV1-TRPV4, TRPM2, TRPM4, TRPM5, and TRPM8 are unique to vertebrates [5]. ThermoTRPs are involved in various sensory transductions and required for the adaptation to ambient environments

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call