Abstract
BackgroundMany physiological processes are influenced by nicotinic acetylcholine receptors (nAChR), ranging from neuromuscular and parasympathetic signaling to modulation of the reward system and long-term memory. Due to the complexity of the nAChR family and variable evolutionary rates among its members, their evolution in vertebrates has been difficult to resolve. In order to understand how and when the nAChR genes arose, we have used a broad approach of analyses combining sequence-based phylogeny, chromosomal synteny and intron positions.ResultsOur analyses suggest that there were ten subunit genes present in the vertebrate predecessor. The two basal vertebrate tetraploidizations (1R and 2R) then expanded this set to 19 genes. Three of these have been lost in mammals, resulting in 16 members today. None of the ten ancestral genes have kept all four copies after 2R. Following 2R, two of the ancestral genes became triplicates, five of them became pairs, and three seem to have remained single genes. One triplet consists of CHRNA7, CHRNA8 and the previously undescribed CHRNA11, of which the two latter have been lost in mammals but are still present in lizards and ray-finned fishes. The other triplet consists of CHRNB2, CHRNB4 and CHRNB5, the latter of which has also been lost in mammals. In ray-finned fish the neuromuscular subunit gene CHRNB1 underwent a local gene duplication generating CHRNB1.2. The third tetraploidization in the predecessor of teleosts (3R) expanded the repertoire to a total of 31 genes, of which 27 remain in zebrafish. These evolutionary relationships are supported by the exon-intron organization of the genes.ConclusionThe tetraploidizations explain all gene duplication events in vertebrates except two. This indicates that the genome doublings have had a substantial impact on the complexity of this gene family leading to a very large number of members that have existed for hundreds of millions of years.
Highlights
Many physiological processes are influenced by nicotinic acetylcholine receptors, ranging from neuromuscular and parasympathetic signaling to modulation of the reward system and long-term memory
The ancestral deuterostome gene duplicated further giving rise to one ancestral gene for the four vertebrate subfamilies consisting of the CHRNB1/CHRNB1.2, CHRND, CHRNE/CHRNG and CHRNB2/CHRNB4/CHRNB5 genes, respectively (Fig. 1)
The ancestor of the CHRNB2/CHRNB4/CHRNB5 subfamily was triplicated at a time point that coincides with 1R and 2R, supported by a group of tunicate sequences present basally to the subfamily (Fig. 1), as confirmed by our paralogon analysis
Summary
Many physiological processes are influenced by nicotinic acetylcholine receptors (nAChR), ranging from neuromuscular and parasympathetic signaling to modulation of the reward system and long-term memory. The combination of pharmacological and genetic studies has revealed a multitude of receptors for acetylcholine (ACh) in vertebrates. They belong to the superfamily of cysteine-loop ion channels named so after two extracellular cysteine residues forming a disulfide bond. This superfamily includes receptors for 5-hydroxytryptamine (5-HT), GABA and glycine in vertebrates. The origin of the Cys-loop superfamily predates the emergence of eukaryotes Despite their name the Cys-loop is not absolutely conserved in all members of the superfamily [2], whereas a proline in this
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.