Abstract

Ultrasonic wave transmission has been used to investigate processes that influence frictional strength, strain localization, fabric development, porosity evolution, and friction constitutive properties in granular materials under a wide range of conditions. We present results from a novel technique using ultrasonic wave propagation to observe the evolution of elastic properties during shear in laboratory experiments conducted at stresses applicable to tectonic faults in Earth’s crust. Elastic properties were measured continuously during loading, compaction, and subsequent shear using piezoelectric transducers fixed within shear forcing blocks in the double-direct-shear configuration. We report high-fidelity measurements of elastic wave properties for normal stresses up to 20 MPa and shear strains up to 500 % in layers of granular quartz, smectite clay, and a quartz-clay mixture. Layers were 0.1–1 cm thick and had nominal contact area of \(5 \mathrm{cm} \!\times \! 5 \mathrm{cm}\). We investigate relationships among frictional strength, granular layer thickness, and ultrasonic wave velocity and amplitude as a function of shear strain and normal stress. For layers of granular quartz, P-wave velocity and amplitude decrease by 20–70 % after a shear strain of 0.5. We find that P-wave velocity increases upon application of shear load for layers of pure clay and for the quartz-clay mixture. The P-wave amplitude of pure clay and quart-clay mixtures first decreases by \(\sim \)50 and 30 %, respectively, and then increases with additional shear strain. Changes in P-wave speed and wave amplitude result from changes in grain contact stiffness, crack density and disruption of granular force chains. Our data indicate that sample dilation and shear localization influence acoustic velocity and amplitude during granular shear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call