Abstract
The evolutionary position and lifestyle of amphibians highlights the important roles of the immune system in adaptive radiation and their adaptation to a complex pathogenic environment. Toll-like receptors (TLRs) are membrane-like sensors that recognize and bind conserved molecular motifs in pathogens to initiate downstream immune responses. To understand the evolutionary patterns of TLRs in amphibians, we analyzed TLR genes from the genomes and transcriptomes of 102 amphibian species. Phylogenetic results showed that 578 intact amphibian TLR sequences belonged to 16 TLR genes and were divided into seven subfamilies. The TLR4 subfamily was only identified in the Anura. Purification selection plays a leading role in amphibian TLR evolution and mean ω (dN/dS) values ranged from 0.252 for TLR7 to 0.381 for TLR19. Furthermore, the ω values of different domains were significantly different. We found positive selection patterns for 141 of 12,690 codons (1.1%) in all amphibian TLRs, most of which were located in leucine-rich repeats (LRRs). We also observed low to moderate levels of single-nucleotide polymorphisms (SNPs) in Pelophylax nigromaculatus and Bombina orientalis. This study provided critical primers, meaningful information regarding TLR gene family evolution in amphibians, and insights into the complex evolutionary patterns and implications of TLR polymorphisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.