Abstract
As the effective limits of frequency and instruction level parallelism have been reached, the strategy of microprocessor vendors has changed to increase the number of processing cores on a single chip each generation. The implicit expectation is that software developers will write their applications with concurrency in mind to take advantage of this sudden change in direction. In this study we analyze whether software developers for laptop/desktop machines have followed the recent hardware trends by creating software for chip multi-processing. We conduct a study of a wide range of applications on Microsoft Windows 7 and Apple's OS X Snow Leopard, measuring Thread Level Parallelism on a high performance workstation and a low power desktop. In addition, we explore graphics processing units (GPUs) and their impact on chip multi-processing. We compare our findings to a study done 10 years ago which concluded that a second core was sufficient to improve system responsiveness. Our results on today's machines show that, 10 years later, surprisingly 2-3 cores are more than adequate for most applications and that the GPU often remains under-utilized. However, in some application specific domains an 8 core SMT system with a 240 core GPU can be effectively utilized. Overall these studies suggest that many-core architectures are not a natural fit for current desktop/laptop applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.