Abstract

In this paper, we consider singular timelike spherical hypersurfaces embedded in a [Formula: see text]-dimensional spherically symmetric bulk spacetime which is an electrovacuum solution of Einstein equations with cosmological constant. We analyze the different possibilities regarding the orientation of the gradient of the standard [Formula: see text] coordinate in relation to the shell. Then we study the dynamics according to Einstein equations for arbitrary matter satisfying the dominant energy condition. In particular, we thoroughly analyze the asymptotic dynamics for both the small and large-shell-radius limits. We also study the main qualitative aspects of the dynamics of shells made of linear barotropic fluids that satisfy the dominant energy condition. Finally, we prove weak cosmic censorship for this class of solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.