Abstract

In 1995, Chapman et al (1995 Phys. Rev. Lett.75 2783) showed experimentally that the interference contrast in a three-grating atom interferometer does not vanish in the presence of scattering events with photons, as required by the complementarity principle. In this work, we present an analytical study of this experiment by determining the evolution of an atom's wave function along the three-grating Mach–Zehnder interferometer under the assumption that the atom is hit by a photon after passing through the first grating. The consideration of a transverse wave function in momentum representation is essential in this study. As is shown, the number of atoms transmitted through the third grating is given by a simple periodic function of the lateral shift along this grating, both in the absence and in the presence of photon scattering. Moreover, the relative contrast (laser on/laser off) is shown to be a simple analytical function of the ratio dp/λi, where dp is the distance between atomic paths at the scattering locus and λ i the scattered photon wavelength. We argue that this dependence, being in agreement with experimental results, can be considered as showing compatibility between the wave and corpuscle properties of atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.