Abstract

We analyze the evolution of the vortex and the asymmetrical parts of orbital angular momentum during its propagation through separable first-order optical systems. We find that the evolution of the vortex part depends on only parameters a(x), a(y), b(x), and b(y) of the ray transformation matrix and that isotropic systems with the same ratio b/a produce the same change of the vortex part of the orbital angular momentum. Finally, it is shown that, when light propagates through an optical fiber with a quadratic refractive-index profile, the vortex part of the orbital angular momentum cannot change its sign more than four times per period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.