Abstract
The evolution of the vibrational spectra of the isoelectronic hydrogen clusters H26, H24He, and H24Li(+) is determined with pressure. We establish the vibrational modes with collective character common to the clusters, identify their individual vibrational fingerprints and discuss frequency shifts in the giga-Pascal pressure region. The results are of interest for the identification of doping elements such as inert He and ionic Li(+) in hydrogen under confinement or, conversely, establish the pressure of doped hydrogen when the vibrational spectrum is known. At high pressure, the spectra of the nanoclusters resemble the spectrum of a solid, and the nanoclusters may be considered crystals of nanometer scale. The computations are performed at the gradient-corrected level of density functional theory. The investigation is the first of its kind.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.