Abstract

The crossover of a pure (undiluted) Ising system (spin per site probability p=1) to a diluted Ising system (spin per site probability p<0.8) is studied by means of Monte Carlo calculations with p ranging between 1 and 0.8 at intervals of 0.025. The evolution of the self-averaging is analyzed by direct determination of the normalized square widths RM and Rχ as a function of p. We find a monotonous and smooth evolution from the pure to the randomly diluted universality class. The p-dependent transition is found to be indepent of size (L). This property is very convenient for extrapolation towards the randomly diluted universality class avoiding complications resulting from finite size effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.