Abstract

The role of surface species in the optical properties of silicon nanocrystals (SiNCs) is the subject of intense debate. Changes in photoluminescence (PL) energy following hydrosilylation of SiNCs with alkyl-terminated surfaces are most often ascribed to enhanced quantum confinement in the smaller cores of oxidized NCs or to oxygen-induced defect emission. We have investigated the PL properties of alkyl-functionalized SiNCs prepared using two related methods: thermal and photochemical hydrosilylation. Photochemically functionalized SiNCs exhibit higher emission energies than the thermally functionalized equivalent. While microsecond lifetime emission attributed to carrier recombination within the NC core was observed from all samples, much faster, size-independent nanosecond lifetime components were only observed in samples prepared using photochemical hydrosilylation that possessed substantial surface oxidation. In addition, photochemically modified SiNCs exhibit higher absolute photoluminescent quantum y...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call