Abstract

We study the evolution of the field on the surface of proto-neutron stars in the immediate aftermath of stellar core collapse by analyzing the results of self-consistent, axisymmetric simulations of the cores of rapidly rotating high-mass stars. To this end, we compare the field topology and the angular spectra of the poloidal and toroidal field components over a time of about one seconds for cores. Both components are characterized by a complex geometry with high power at intermediate angular scales. The structure is mostly the result of the accretion of magnetic flux embedded in the matter falling through the turbulent post-shock layer onto the PNS. Our results may help to guide further studies of the long-term magneto-thermal evolution of proto-neutron stars. We find that the accretion of stellar progenitor layers endowed with low or null magnetization bury the magnetic field on the PNS surface very effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.