Abstract

Longitudinally averaged observations of the photospheric field during 1976-1986 are analyzed using a flux transport model. The way in which source eruptions, supergranular diffusion, and meridional flow collaborate to produce strong, highly concentrated polar fields near sunspot minimum is clarified as follows: (1) widespread eruptions of individual bipolar magnetic regions, with their leading polarity flux equatorward of their trailing polarity flux, collectively establish a large-scale separation of polarities in latitude; (2) the low-latitude, leading polarity flux diffuses across the equator and merges with its opposite hemisphere counterpart; and (3) meridional flow carries the resulting surplus of trailing polarity flux to the poles, and concentrates it there against the spreading effect of diffusion. Episodic 'surges' of flux to the poles are induced by fluctuations in the source eruption rate. Simulations indicate that relatively weak, trailing polarity surges may occur even in a steady flow field. However, in order to account for the giant surges of alternating polarity and the resulting oscillations in the polar field strength observed during 1980-1982, both accelerated flow and enhanced eruption rates are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.