Abstract

Life on Earth has existed for over 3.5 billion years and has caused fundamental changes in Earth’s biogeochemistry. However, the timing and impact of major events in the evolution of the biosphere are hotly contested, owing partially to the inherent difficulty in studying events that occurred in deep time. In this Review, we discuss the evolving structure of Earth’s biosphere and major changes in its capacity to alter geochemical cycles. We describe evidence that oxygenic photosynthesis evolved relatively early, but contend that marine primary productivity was low, surface oxygen was scarce and marine anoxia was prevalent for the majority of Earth’s history. Anoxygenic phototrophs were likely a key part of the marine biosphere in these low-oxygen oceans, and nutrient uptake by these organisms was one factor limiting the extent of marine oxygenic photosynthesis. Moreover, there are potential issues with the commonly held idea that the diversification of eukaryotes fundamentally altered ocean nutrient cycling and transformed the marine biological pump. Furthermore, we argue that terrestrial primary productivity was a substantial mode of biological carbon fixation following the widespread emergence of continental land masses, even before the rise of land plants, impacting carbon cycling on a global scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call