Abstract

Microelectronic encapsulants exhibit evolving properties that change significantly with environmental exposures such as isothermal aging and thermal cycling. Such aging effects are exacerbated at higher temperatures typical of thermal cycling qualification tests for harsh environment electronic packaging. In this work, measurements of material behavior changes occurring in flip chip underfill encapsulants exposed to isothermal aging have been performed. A novel method has been developed to fabricate freestanding underfill uniaxial test specimens so that they accurately reflect the encapsulant layer present in flip chip assemblies. Using the developed specimen preparation procedure, isothermal aging effects have been characterized at several elevated temperatures (+ 80, +100, + 125, and +150 °C). Samples have been aged at the four temperatures for periods up to 6 months. Stress-strain and creep tests have been performed on non-aged and aged samples, and the changes in mechanical behavior have been recorded for the various aging temperatures and durations of isothermal exposure. Empirical models have been developed to predict the evolution of the material properties (modulus, strength) and the creep strain rate as a function of temperature, aging time, and aging temperature. The evaluated underfill illustrated softening behavior at temperatures exceeding 100 °C, although the documented Tg ranged from 130–150 °C. The obtained results showed an obvious enhancement of the underfill mechanical properties as a function of the aging temperature and aging time. Both the effective elastic modulus (initial slope) and ultimate tensile strength (highest stress before failure) increase monotonically with the amount of isothermal aging or aging temperature, regardless of whether the aging temperature is below, at, or above the Tg of the material. From the creep results, it was seen that at a given time, the creep strains were much lower for the aged samples relative to the non-aged samples. Thermal aging has a significant effect on the secondary creep rate, which decreases with both the aging temperature and the aging time. Up to a 100X reduction in the creep rate was observed, and the major changes occurred during the first 50 days of the isothermal aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call