Abstract
When hydrocarbon reservoirs are used as a CO2 storage facility, an accurate uncertainty analysis and risk assessment is essential. An integration of information from geological knowledge, geological modelling, well log data, and geophysical data provides the basis for this analysis. Modelling the time development of stress/strain changes in the overburden provides prior knowledge about fault and fracture probability in the reservoir, which in turn is used in seismic inversion to constrain models of faulting and fracturing. One main problem in solving large scale seismic inverse problems is high computational cost and inefficiency. We use a newly introduced methodology - Informed-proposal Monte Carlo (IPMC) - to deal with this problem, and to carry out a conceptual study based on real data from the Danish North Sea. The result outlines a methodology for evaluating the risk of having sub-seismic faulting in the overburden that potentially compromises the CO2 storage of the reservoir.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.