Abstract
Sex chromosomes have evolved independently in many different plant lineages. Here, we describe reference genomes for spinach (Spinacia oleracea) X and Y haplotypes by sequencing homozygous XX females and YY males. The long arm of the 185 Mb chromosome 4 carries a 13 Mb X-linked region (XLR) and 24.1 Mb Y-linked region (YLR), of which 10 Mb is Y-specific. We describe evidence that this reflects insertions of autosomal sequences creating a "Y duplication region" or "YDR" whose presence probably directly reduces genetic recombination in the immediately flanking regions, although both the X and Y Sex-Linked Regions are within a large pericentromeric region of chromosome 4 that recombines rarely in meiosis of both sexes. Sequence divergence estimates using synonymous sites indicate that YDR genes started diverging from their likely autosomal progenitors about 3 MYA, around the time when the flanking YLR stopped recombining with the XLR. These flanking regions have a higher density of repetitive sequences in the YY than the XX assembly and include slightly more pseudogenes compared with the XLR, and the YLR has lost about 11% of the ancestral genes, suggesting some degeneration. Insertion of a male-determining factor would have caused Y-linkage across the entire pericentromeric region, creating physically small, highly recombining, terminal pseudo-autosomal regions. These findings provide a broader understanding of the origin of sex chromosomes in spinach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.