Abstract

We present a numerical analysis of the spin evolution of neutron stars in low-mass X-ray binaries, trying to explain the discrepancy in the spin period distribution between observations of millisecond pulsars and theoretical results. In our calculations, we take account of possible effects of radiation pressure and irradiation-induced instability on the structure of the disk, and the evolution of the mass transfer rate, respectively. We report the following results: (1) The radiation pressure in the accretion disk leads to a slight increase of spin periods, and the variation of mass transfer rate caused by the neutron star irradiation can shorten the spin-down phase of evolution. (2) The calculated results of the model combining radiation pressure and irradiation show that the accretion is strongly limited by the radiation pressure in the high mass transfer phase. (3) The accreted mass and fastness parameter can affect the number of systems in the equilibrium state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call