Abstract

BackgroundSPATULA (SPT) and ALCATRAZ (ALC) are recent paralogs that belong to the large bHLH transcription factor family. Orthologs of these genes have been found in all core eudicots, whereas pre-duplication genes, named paleoSPATULA/ALCATRAZ, have been found in basal eudicots, monocots, basal angiosperms and gymnosperms. Nevertheless, functional studies have only been performed in Arabidopsis thaliana, where SPT and ALC are partially redundant in carpel and valve margin development and ALC has a unique role in the dehiscence zone. Further analyses of pre-duplication genes are necessary to assess the functional evolution of this gene lineage.ResultsWe isolated additional paleoSPT/ALC genes from Aristolochia fimbriata, Bocconia frutescens, Cattleya trianae and Hypoxis decumbens from our transcriptome libraries and performed phylogenetic analyses. We identified the previously described bHLH domain in all analyzed sequences and also new conserved motifs using the MEME suite. Finally, we analyzed the expression of three paleoSPT/ALC genes (BofrSPT1/2/3) from Bocconia frutescens, a basal eudicot in the Papaveraceae. To determine the developmental stages at which these genes were expressed, pre- and post-anthesis carpels and fruits of B. frutescens were collected, sectioned, stained, and examined using light microscopy. Using in situ hybridization we detected that BofrSPT1/2/3 genes are expressed in floral buds, early sepal initiation, stamens and carpel primordia and later during fruit development in the dehiscence zone of the opercular fruit.ConclusionsOur expression results, in comparison with those available for core eudicots, suggest conserved roles of members of the SPT/ALC gene lineage across eudicots in the specification of carpel margins and the dehiscence zone of the mature fruits. Although there is some redundancy between ALC and SPT, these gene clades seem to have undergone some degree of sub-functionalization in the core eudicots, likely by changes in cis regulatory regions and to some extent in coding sequences, at least in Brassicaceae. Our results also indicate that in Bocconia frutescens, paleoSPT/ALC genes may play a role in early floral organ specification that was subsequently lost in core eudicot lineages.

Highlights

  • SPATULA (SPT) and ALCATRAZ (ALC) are recent paralogs that belong to the large bHLH transcription factor family

  • Motif 11 G/VT/MLPV/LNQE/DSST/AxxxF is present in most non-core eudicot proteins, but it is absent in Brassicaceae SPT and ALC homologs

  • Our results show broader expression patterns during early floral organ specification, compared to that reported for SPT and ALC in Arabidopsis, but point to ancestral roles in eudicot paleoSPT/ALC homologs in early gynoecium patterning including the formation of the septum, the stigma and the style

Read more

Summary

Introduction

SPATULA (SPT) and ALCATRAZ (ALC) are recent paralogs that belong to the large bHLH transcription factor family. Paleopolyploidy has been traced back to WGD occurring before the diversification of angiosperms, prior to the origin of core eudicots, within the Brassicales and Solanales, and concomitant with monocot diversification [7,8,9] In this framework, basal eudicots have become a unique reference for assessing gene functional evolution in core eudicots, the latter include 75% of flowering plant species with unique paleopolyploidy events, whereas the former include species with pre-duplication genes, often single copy, most of the time exemplifying the ancestral role prior to the WGD events. SPT and ALC proteins are able to form heterodimers and have redundant roles in gynoecium development They are key factors during carpel and valve (fruit wall) margin development, as shown by the spt/alc double mutant, which exhibits increased severity in the carpel separation as well as defects in style and stigma patterning and the histogenesis of the valve margin, and the dehiscence zone [21]. It is likely that despite the fact that they act partly redundantly in early gynoecium patterning and late fruit development, there is some specialization due to changes in expression patterns and protein interactions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call