Abstract

Abstract Recent studies of interstellar neutral (ISN) hydrogen observed by the Interstellar Boundary Explorer (IBEX) suggested that the present understanding of the radiation pressure acting on hydrogen atoms in the heliosphere should be revised. There is a significant discrepancy between theoretical predictions of the ISN H signal using the currently used model of the solar Lyα profile by Tarnopolski & Bzowski and the signal due to ISN H observed by IBEX-Lo. We developed a new model of evolution of the solar Lyα profile that takes into account all available observations of the full-disk solar Lyα profiles from SUMER/SOHO, provided by Lemaire et al., covering practically the entire 23rd solar cycle. The model has three components that reproduce different features of the profile. The main shape of the emission line that is produced in the chromosphere is modeled by the kappa function; the central reversal due to absorption in the transition region is modeled by the Gauss function; and the spectral background is represented by the linear function. The coefficients of all of those components are linear functions of the line-integrated full-disk Lyα irradiance, which is the only free parameter of the model. The new model features potentially important differences in comparison with the model by TB09, which was based on a limited set of observations. This change in the understanding of radiation pressure, especially during low solar activity, may significantly affect the interstellar H and D distributions in the inner heliosphere and their derivative populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call