Abstract

Abstract In this paper, the evolution of the raindrop size distribution (RSD) is investigated for two isolated shallow cumulus clouds that are modeled with large-eddy simulations. For a two-moment bulk rain microphysics scheme that assumes the RSD to follow a gamma distribution, it is shown that the evolution of the rainwater content of an individual shallow cumulus cloud—in particular, its subcloud-layer rainwater amount and its surface precipitation rate—is highly sensitive to the choice of the shape parameter of the gamma distribution. To further investigate the shape of the RSD, a Lagrangian drop model is used to represent warm rain microphysics without a priori assumptions on the RSD. It is found that the shape parameter is highly variable in space and time and that existing closure equations, which are established from idealized studies of more heavily precipitating cases, are not appropriate for shallow cumulus. Although a relation of the shape parameter to the mean raindrop diameter is also found for individual shallow cumulus clouds, this relation differs already for the two clouds considered. It is therefore doubtful whether a two-moment scheme with a diagnostic parameterization of the shape parameter (i.e., a local closure in space and time) can be sufficient, especially when being applied across different cloud regimes. A three-moment bulk rain microphysics scheme is able to capture the general development of the relation of the shape parameter to the mean raindrop diameter for the two simulated clouds but misses some relevant features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call