Abstract

The dynamics of gas expansion during nanosecond laser evaporation into vacuum is studied. The problem is considered in an axisymmetric formulation for a wide range of parameters: the number of evaporated monolayers and the size of the evaporation spot. To obtain a reliable numerical solution, two different kinetic approaches are used—the direct simulation Monte Carlo method and solution of the BGK model kinetic equation. The change in the shape of the cloud of evaporated substance during the expansion process is analyzed. The strong influence of the degree of rarefaction on the shape of the forming cloud is shown. When a large number of monolayers evaporate, good agreement with the continuum solution is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.