Abstract
AbstractThe modification of the external surface area and the two types of microporosity of palygorskite (structural and interfiber porosity) were examined as a function of the temperature of a vacuum thermal treatment to 500°C. The methods used included: controlled-transformation-rate thermal analysis, N2 and Ar low-temperature adsorption microcalorimetry, conventional and continuous gas-adsorption volumetry (for N2 and Ar) at 77 K and CO2 at 273 and 293 K, water vapor adsorption gravimetry, and immersion microcalorimetry in water. At temperatures < 100°C only 18% of the structural microporosity was available to N2, 13% to Ar, and 100% to CO2 at 273 K. In both experiments the channels filled at very low relative pressures. At temperatures between 70° and 130°C the structure folded, and the mineral transformed to anhydrous palygorskite, which showed no structural microporosity. The interfiber microporosity was found to be independent of the temperature treatment, and the external surface area decreased slightly from 65 to 54 m2/g. The water adsorption isotherms showed that the folding of the structure was reversible up to final outgassing temperatures >225°C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.