Abstract
AbstractWe study the evolution of the plasma environment of comet 67P using measurements of the spacecraft potential from early September 2014 (heliocentric distance 3.5 AU) to late March 2015 (2.1 AU) obtained by the Langmuir probe instrument. The low collision rate keeps the electron temperature high (∼5 eV), resulting in a negative spacecraft potential whose magnitude depends on the electron density. This potential is more negative in the northern (summer) hemisphere, particularly over sunlit parts of the neck region on the nucleus, consistent with neutral gas measurements by the Cometary Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Assuming constant electron temperature, the spacecraft potential traces the electron density. This increases as the comet approaches the Sun, most clearly in the southern hemisphere by a factor possibly as high as 20–44 between September 2014 and January 2015. The northern hemisphere plasma density increase stays around or below a factor of 8–12, consistent with seasonal insolation change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.