Abstract

Natural transformation enables the incorporation of exogenous DNA into host genomes and plays a fundamental role in the evolution of microbial populations. At the center of the natural transformation machinery, the ComEC protein mediates DNA import and serves potential functions in DNA recognition and single strand degradation. Despite its importance, the evolution of ComEC is not fully understood. Here, we aim to fill this knowledge gap by surveying putative ComEC proteins across 5,574 bacteria that span diverse phyla. We first derived the presence of a universal, core Competence domain through the analysis of ComEC proteins from known naturally competent species. Then, we followed this observation to identify Competence domain containing proteins (CDCPs) from all bacteria and used CDCPs as putative ComEC proteins for evolutionary analysis. A near universal presence of CDCPs was revealed, with 89% of the proteomes and 96% of the genomes encoding a single CDCP or a CDCP-like fragment. Two domains, DUF4131 and Lactamase_B, were found to commonly co-occur with the Competence domain. Ancestral state reconstruction of CDCPs over the bacterial species phylogeny suggested an origin of a Competence-only domain profile, while multiple gains and losses of the DUF4131 and Lactamase_B domains were observed among diverse bacterial lineages.

Highlights

  • Natural transformation (NT) is a process by which exogenous DNA is imported and incorporated into a genome

  • The Competence protein EC (ComEC) protein mediates the critical step of single-stranded DNA (ssDNA) membrane translocation, and as such it serves as an essential component of the NT machinery

  • The current study has provided a stepping stone into bridging this knowledge gap through a global survey of putative ComEC proteins and a reconstruction of their ancestral states

Read more

Summary

Introduction

Natural transformation (NT) is a process by which exogenous DNA is imported and incorporated into a genome. It is an important mechanism of horizontal gene transfer and as such enables DNA repair and the acquisition of new functions, such as antibiotic resistance and nutrition utilization (Ambur et al, 2016). Due to the diverse regulatory mechanisms involved in NT, natural competence is often difficult to initiate in laboratory conditions (Dubnau, 1991; Meibom et al, 2005). In gram-negative bacteria, initiation of outer membrane double-stranded DNA (dsDNA) uptake into the periplasmic space involves proteins related to components of the type IV pilus, the type II secretion system (Chen and Dubnau, 2004), or the type IV secretion system

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call