Abstract

We discuss the evolution of the magnetic properties and magnetic structures along the series of intermetallic compounds RmMIn3m+2 (R=Ce, Nd, Gd, Tb; M=Rh, Ir; and m=1,2). The m=1,2 are, respectively, the single layer and bilayer tetragonal derivatives of their cubic RIn3 relatives. Using a mean field model including an isotropic first-neighbors Ruderman-Kittel-Kasuya-Yoshida interaction (K) and the tetragonal crystalline electrical field (CEF), we demonstrated that, for realistic values of K and CEF parameters, one can qualitatively describe the direction of the ordered moments and the behavior of the ordering temperature for these series. The particular case, where the rare-earth ordered moments lie in the ab plane or are tilted from the c axis and TN can be reduced by tuning the CEF parameters, revealed an interesting kind of frustration that may be relevant to the physical properties of complex classes of materials such as the RmMIn3m+2 (M=Rh, Ir, and Co; m=1,2) heavy-fermion superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.