Abstract

The time dependence of the Zeeman-sublevel anticrossing signal in triplet localized exciton emission in the GaSe0.87Te0.13 semiconductor solid solution has been studied by the time-resolved spectroscopy method under conditions of unpolarized pumping. It has been shown that the anticrossing signal shape changes significantly for the lifetime t of localized excitons. At the time point t = 0, the anticrossing signal is not detected; as t increases, a maximum is formed in the dependence of the exciton emission intensity on the magnetic field (at this stage, the anticrossing signal shape is identical to that observed under conditions of steady-state excitation), which is split into a doublet as t further increases. A theoretical interpretation of the observed time dependence of the Zeeman-sublevel anticrossing signal in localized exciton emission has been proposed. The fine structure parameters and lifetimes of the triplet localized excitons have been determined in different spin states by comparing theory and experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call