Abstract

The hybrid graphene/SiC model is studied via molecular dynamics simulation to observe the evolution of the graphene layer upon heating. A two-layer model containing 10,000 graphene atoms and 7000 SiC atoms is heated from 50 K to 6000 K via Tersoff and Lennard-Jones potentials. The melting point zone is defined as the temperature range from 4400 K to 4600 K, which is close to the melting zone of graphite in an experiment. The Lindemann criterion for the 2D case is calculated and used to observe the appearance of liquid-like atoms. The evolution upon heating is analyzed on the basis of the occurrence/growth of liquid-like atoms, the radial distribution functions, and the formation of clusters. The liquid-like atoms tend to form clusters, and the largest cluster increases in size slightly to form a single largest cluster of liquid-like atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.