Abstract

The evolution of the glow of the energy-release zone in porous transparent aerogel, with a density of 0.03–0.25 g/cm3, which is irradiated by a high-power pulse electron beam, is studied experimentally. In addition to a fast (τ≤τbeam) and a luminescent (τ≈10−6 s) glow components, a slow glow component (τ≈2×10−5 s) has been revealed. The appearance of this slow component is associated with an aerogel rarefaction wave and its destruction (cracking) arising after its isochoric bulk heating by electron radiation, which may occur due to an electrostatic field induced under irradiation. The discovered glow is utilized to visually determine the current position of the rarefaction wave front. The sound velocity measured as a function of the density of SiO2 aerogels with porosities of 10–100 allowed us to experimentally determine the percolation parameter of the aerogel equation of state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.