Abstract

AbstractThe G matrix is a statistical summary of the genetic basis of a set of traits and a central pillar of quantitative genetics. A persistent controversy is whether G changes slowly or quickly over time. The evolution of G is important because it affects the ability to predict, or reconstruct, evolution by selection. Empirical studies have found mixed results on how fast G evolves. Theoretical work has largely been developed under the assumption that the relationship between genetic variation and phenotypic variation-the genotype-phenotype map (GPM)-is linear. Under this assumption, G is expected to remain constant over long periods of time. However, according to developmental biology, the GPM is typically complex and nonlinear. Here, we use a GPM model based on the development of a multicellular organ to study how G evolves. We find that G can change relatively fast and in qualitative different ways, which we describe in detail. Changes can be particularly large when the population crosses between regions of the GPM that have different properties. This can result in the additive genetic variance in the direction of selection fluctuating over time and even increasing despite the eroding effect of selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.