Abstract
Flax (Linum usitatissimum) lodging is an issue of great interest for industrial producers due to its economic impact; despite a strong varietal selection over around one century, this plant remains sensitive to lodging which represents a main technico-economic issue. To better understand lodging effects at the cell wall and stem scale, the cell wall composition dynamics during cell wall development and after a 90° tilt bending stress is reported. Deep-UltraViolet (DUV) fluorescence emission dynamics recorded at the Synchrotron SOLEIL-DISCO beamline by multichannel autofluorescence imaging is addressed for five cellular wall types of flax stems after an artificially induced gravitropic reaction. The quantitative fluorescent profile intensities were computed after image analysis, and compared to the control flax stems, we reported a systematically higher average intensity fluorescence (probability >95%) for the 90° tilted plants. Moreover, the average stem fluorescence intensities were significantly different among the 3 developmental stages, with the youngest stage (VS) exhibiting on average 30% and 20% less fluorescence than the medium (FG) and mature (M) stages, respectively. The flax stem response to tilt impacted the xylem cellular type, while the bast fibres were arguably less affected by the protein, and hydroxycinnamate contents. A complementary investigation was carried out on bast fibres by infrared microspectroscopy to explore the polysaccharide components not detected in DUV fluorescence, and significant modifications were monitored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.