Abstract

Periodic lattice distortion, known as the charge density wave, is generally attributed to electron-phonon coupling. This correlation is expected to induce a pseudogap at the Fermi level in order to gain the required energy for stable lattice distortion. The transition metal dichalcogenide 1T-VSe2 also undergoes such a transition at 110 K. Here, we present detailed angle-resolved photoemission spectroscopy experiments to investigate the electronic structure in 1T-VSe2 across the structural transition. Previously reported warping of the electronic structure and the energy shift of a secondary peak near the Fermi level as the origin of the charge density wave phase are shown to be temperature independent and hence cannot be attributed to the structural transition. Our work reveals new states that were not resolved in previous studies. Earlier results can be explained by the different dispersion natures of these states and temperature-induced broadening. Only the overall size of the Fermi surface is found to change across the structural transition. These observations, quite different from the charge density wave scenario commonly considered for 1T-VSe2 and other transition metal dichalcogenides, bring fresh perspectives toward correctly describing structural transitions. Therefore, these new results can be applied to material families in which the origin of the structural transition has not been resolved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.