Abstract

We use the dynamical cluster approximation, with a quantum Monte Carlo cluster solver on clusters of up to 16 orbitals, to investigate the evolution of the Fermi surface across the magnetic order-disorder transition in the two-dimensional doped Kondo lattice model. In the paramagnetic phase, we observe the generic hybridized heavy-fermion band structure with large Luttinger volume. In the antiferromagnetic phase, the heavy-fermion band drops below the Fermi surface giving way to hole pockets centered around k=(pi/2,pi/2) and equivalent points. In this phase Kondo screening does not break down, but the topology of the resulting Fermi surface is that of a spin-density wave approximation in which the localized spins are frozen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.