Abstract

Systematic analysis is made for illuminating the mechanism of rotational and vibrational excitations in an impulsive ion-molecule collision from the viewpoint of its sudden nature. Variation of the energy-loss spectrum with the projectile mass is examined in the collision system of an alkali-metal ion with a nitrogen molecule at a hyperthermal energy of 27 eV using a common interaction potential. The spectra are obtained by the classical trajectory calculation and compared with two sudden-limit models---the hard-shell model for rigid-rotor molecules and the hard-potential model for vibrating-rotor molecules [A. Ichimura and M. Nakamura, Phys. Rev. A 69, 022716 (2004)]. For a projectile much lighter than the target, the vibrational and rotational excitation occurs in such a way that the hard-potential model predicts, producing a spectral profile with double peaks. As the projectile mass increases, the vibrational suddenness is degraded so that the vibrational excitation becomes quenched, while the spectral profile still shows a double-peak structure explainable with the hard-shell model. Subsequently, as the projectile mass further increases, the rotational suddenness is also degraded so that the spectrum indicates a profile departing far from the prediction of the hard-shell model; the deeply inelastic peak is suppressed and the nearly elastic peak is enhanced. Such spectral deformation actually occurs in an experimental result reported for ${\mathrm{Na}}^{+}--{\mathrm{N}}_{2}$ collisions [M. Nakamura, S. Kita, and T. Hasegawa, J. Phys. Soc. Jpn. 56, 3161 (1987)]. Eventually, the deeply inelastic peak disappears due to temporary excitation during a collision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call