Abstract

<div> <div> <div> <p>The solar coronal plasma which escapes the Sun’s gravity and expands through our solar system is called the solar wind. It consists mainly of electrons and protons, carries the Sun’s magnetic field and, at most heliocentric distances, remains weakly-collisional. Due to their small mass, the solar wind electrons have much higher thermal velocity than their positively charged counterpart, and play an important role in the solar wind energetics by carrying the heat flux away from the Sun. Their velocity distribution functions (VDFs) are complex, usually modeled by three components. While the majority of electrons belong to the low-energetic thermal Maxwellian core population, some reach higher velocities, forming either the magnetic field aligned strahl population, or an isotropic high-energy halo population. This shape of the electron VDF is a product of the interplay between<br>Coulomb collisions, adiabatic expansion, global and local electro-magnetic fields and turbulence.<br>In this work we focus on the effects of local electro-magnetic wave activity on electron VDF, taking advantage of the early measurements made by the novel heliospheric Solar Orbiter mission. The high- cadence sampling of 2-dimensional electron VDFs by the electrostatic analyser SWA-EAS, together with the EM wave data collected by the seach-coil magnetometers and electric-field antennas, part of</p> </div> </div> </div><div> <div> <div> <p>the RPW instrument suit, allow a direct investigation of the wave-particle energy and momentum exchange. We present the evolution of the electron VDF in the presence of quasi-parallel and oblique whistler waves, believed to be responsible for scattering the strahl and creating the halo population (Verscharen et al. 2019; Micera et al. 2020).</p> </div> </div> </div>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call