Abstract

Although broadly studied, molecular glass formers are not well investigated above their melting point. Correlation times down to 10(-12) s are easily accessible when studying low-T(g) systems by depolarized light scattering, employing a tandem-Fabry-Perot interferometer and a double monochromator. When combining these techniques with state-of-the-art photon correlation spectroscopy (PCS), broad band susceptibility spectra become accessible which can compete with those of dielectric spectroscopy (DS). Comparing the results with those from DS, optical Kerr effect, and NMR, we describe the evolution of the susceptibilities starting from the boiling point T(b) down to T(g), i.e., from simple liquid to glassy dynamics. Special attention is given to the emergence of the excess wing contribution which is also probed by PCS and which signals a crossover of the spectral evolution. The process is attributed to a small-angle precursor process of the α-relaxation, and the apparent probe dependent stretching of the α-process is explained by a probe dependent contribution of the excess wing. Upon cooling, its emergence is linked to a strong decrease of the strength of the fast dynamics which is taken as reorientational analog of the anomaly of the Debye-Waller factor. Many glass formers show in addition a slow β-process which manifests itself rather universally in NMR, in DS, however, with different amplitudes, but not at all in PCS experiments. Finally, a three-parameter function is discussed interpolating τ(α)(T) from T(b) to T(g) by connecting high- and low-temperature dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call