Abstract

Formation and evolution of the microscopic solid electrolyte interphase (SEI) at the Mg electrolyte/electrode interface are less reported and need to be completely understood to overcome the compatibility challenges at the Mg anode-electrolyte. In this paper, SEI evolution at the Mg electrolyte/electrode interface is investigated via an in situ electrochemical quartz crystal microbalance with dissipation mode (EQCM-D), electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectrometry (FTIR). Results reveal remarkably different interfacial evolutions for the two Mg electrolyte systems that are studied, a non-halogen Mg(TFSI)2 electrolyte in THF with DMA as a cosolvent (nhMg-DMA electrolyte) versus a halogen-containing all-phenyl complex (APC) electrolyte. The nhMg-DMA electrolyte reports a minuscule SEI formation along with a significant Coulomb loss at the initial electrochemical cycles owing to an electrolyte reconstruction process. Interestingly, a more complicated SEI growth is observed at the later electrochemical cycles accompanied by an improved reversible Mg deposition attributed to the newly formed coordination environment with Mg2+ and ultimately leads to a more homogeneous morphology for the electrochemically deposited Mg0, which maintains a MgF2-rich interface. In contrast, the APC electrolyte shows an extensive SEI formation at its initial electrochemical cycles, followed by a SEI dissolution process upon electrochemical cycling accompanied by an improved coulombic efficiency with trace water and chloride species removed. Therefore, it leads to SEI stabilization progression upon further electrochemical cycling, resulting in elevated charge transport kinetics and superior purity of the electrochemically deposited Mg0. These outstanding findings augment the understanding of the SEI formation and evolution on the Mg interface and pave a way for a future Mg-ion battery design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call