Abstract
Evolution of the total carbon (C) content and the (13)C enrichment (delta(13)C signature) of soil organic matter (SOM) with increasing depth in a soil profile under permanent grassland (C(3) vegetation) were investigated. The relationship between the total C content and the delta(13)C signature at different depths in the upper 30 cm of the soil profile could be well fitted by the Rayleigh equation (y = -29.8 - 2.3x, R(2) = 0.95, p < 0.001), describing the enrichment in (13)C as resulting from isotopic fractionation associated with C mineralization (isotope enrichment factor epsilon = -2.3 per thousand). Potential C dynamics of SOM in four depth intervals of the profile (0-10, 10-20, 20-30 and 30-40 cm depth) were investigated through an incubation study. The C decomposition rate constants decreased with increasing sampling depth from 0.0479 yr(-1) (0-10 cm sampling depth) to 0.0256 yr(-1) (30-40 cm sampling depth) and were highly correlated (y = 0.02 + 0.13x, R(2) = 0.93, p < 0.05) with the corresponding deltadelta(13)C values (average change of the delta(13)C signature per depth increment). These results suggest that changes of the delta(13)C signature of SOM in undisturbed soil profiles under continuous C(3) vegetation may serve as an indicator of the variation of SOM quality with increasing depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.