Abstract

Zinc-oxide powder was tribophysically activated in a high-energy vibro mill in a continual regime in air for 3, 30 and 300 minutes with the purpose of modifying the powders physico-chemical properties. By analyzing of data obtained by X-ray powder diffraction, electron diffraction and transmission electron microscopy, the values of distances between corresponding crystallographic planes, average domain sizes of coherent scattering, i.e. crystallites, width of diffraction lines due to the existence of microstrains, and microstrain values, minimal dislocation densities, dislocation density due to microstrain and real dislocation density, and also average distances between dislocations were determined. The dependence of these values on the activation time was established, which enabled analysis of the evolution of the defect structure of zinc-oxide powders during tribophysical activation by grinding in the described regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.