Abstract

The redox state of the surface environment of the early Earth is still controversial, and a detailed and quantitative estimate is still lacking. We carried out in-situ analyses of major, trace, and rare-earth elements of carbonate minerals in rocks with primary sedimentary structures in shallow and deep sea-deposits, in order to eliminate secondary carbonate and contamination of detrital materials, and to estimate the redox condition of seawater through time. Based on the Ce content and anomalies of the carbonate minerals at given parameters of atmospheric CO 2 content (pCO 2) and Ca content of seawater, we calculated the oxygen contents of shallow and deep seawater, respectively. The results show that the oxygen content of the deep sea was low and constant until at least 1.9 Ga. The oxygen content of shallow seawater increased after 2.7 Ga, but fluctuated. It became quite high at 2.5 and 2.3 Ga, but eventually increased after the Phanerozoic. In addition, the calculation of a high pCO 2 condition shows that seawater was more oxic even in the Archean than at present, suggesting a relatively low pCO 2 through geologic time. Our detailed calculations from compositions of carbonate minerals in Three Gorge area, south China show a low oxygen content of seawater after the Snowball Earth until the late Ediacaran, an increase in the late Ediacaran, and a significant decrease around the Precambrian–Cambrian and Nemakit/Daldynian–Tommotian boundaries. These variations were possibly caused by global regression and dissolution of methane hydrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.