Abstract

A large system of N N integer-spin atoms, called Bosons, manifests one of the most coherent macroscopic quantum states known to date, the “Bose-Einstein condensate”, at extremely low temperatures. As N → ∞ N\to \infty , this system is usually described by a mean-field limit: a single-particle wave function, the condensate wave function, that satisfies a nonlinear Schrödinger-type equation. In this expository paper, we review kinetic aspects of the mean-field Boson evolution. Furthermore, we discuss recent advances in the rigorous study of second-order corrections to this mean-field limit. These corrections originate from the quantum-kinetic mechanism of pair excitation, which lies at the core of pioneering works in theoretical physics including ideas of Bogoliubov, Lee, Huang, Yang and Wu. In the course of our exposition, we revisit the formalism of Fock space, which is indispensable for the analysis of pair excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.