Abstract

It is unknown why roses are terpene-rich, what the terpene biosynthetic pathways in roses are, and why only a few rose species produce the major components of rose essential oil. Here, we assembled two high-quality chromosome-level genomes for Rosa rugosa and Rosa multiflora. We also re-sequenced 132 individuals from the F1 progeny of Rosa chinensis and Rosa wichuraiana and 36 of their related species. Comparative genomics revealed that expansions of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) and terpene synthases (TPSs) gene families led to the enrichment of terpenes in rose scent components. We constructed a terpene biosynthesis network and discovered a TPS-independent citronellol biosynthetic pathway in roses through gene functional identification, genome-wide association studies (GWASs), and multi-omic analysis. Heterologous co-expression of rose citronellol biosynthetic genes in Nicotiana benthamiana led to citronellol production. Our genomic and metabolomic analyses suggested that the copy number of NUDX1-1a determines the citronellol content in different rose species. Our findings not only provide additional genome and gene resources and reveal the evolution of the terpene biosynthetic pathways but also present a nearly complete scenario for terpenoid metabolism that will facilitate the breeding of fragrant roses and the production of rose oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call