Abstract

Karten's neocortex hypothesis holds that many component cell populations of the sauropsid dorsal ventricular ridge (DVR) are homologous to particular cell populations in layers of auditory and visual tectofugal-recipient neocortex of mammals (i.e., temporal neocortex), as well as to some amygdaloid populations. The claustroamygdalar hypothesis, based on gene expression domains, proposes that mammalian homologues of DVR are found in the claustrum, endopiriform nuclei, and/or pallial amygdala. Because hypotheses of homology need to account for the totality of the evidence, the available data on multiple forebrain features of sauropsids and mammals are reviewed here. While some genetic data are compatible with the claustroamygdalar hypothesis, and developmental (epigenetic) data are indecisive, hodological, morphological, and topographical data favor the neocortex hypothesis and are inconsistent with the claustroamygdalar hypothesis. Detailed studies of gene signaling cascades that establish neuronal cell-type identity in DVR, tectofugal-recipient neocortex, and claustroamygdala will be needed to resolve this debate about the evolution of neocortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.