Abstract

A resurgence of interest in the ecology of perennially ice-covered lakes in the McMurdo dry valleys has necessitated a review of our knowledge of the physical and chemical properties of these unusual lakes. Salinities in the ice-covered lakes cover a range from freshwater to hypersaline brines. Recent measurements of salt composition and concentrations in Lake Bonney reveal little change below the chemocline since extensive measurements made in 1960–1961, although lake level has risen by approximately 5 m since that time. The rise in lake level has resulted in a thickening of the freshwater layer above the chemocline. Temperature structure has adjusted to the effects of increased lake level on heat transfer processes such as transmission and absorption of solar radiation in the water column. Questions about how water-column stability affects biology in Lake Bonney have motivated the formulation of a method to compute density from in situ measurements of temperature, conductivity and pressure. Owing to high salt concentration and unique ion ratios, we modified the UNESCO Equation of State for seawater to predict density at salinities greater than 42. The modifications merge smoothly with the UNESCO equations at a salinity of 42. At salinities below 42 the UNESCO equations give excellent predictions of density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call