Abstract

AbstractRecent numerical models for SNR evolution are presented, including first-order Fermi acceleration with injection of suprathermal particles at the shock wave, heating due to dissipation of Alfvén waves in the precursor region and radiative cooling of the thermal plasma. The X-ray fluxes obtained from these SNR models show significant differences depending on the acceleration efficiency of cosmic rays. γ-ray fluxes are calculated originating from π0-decay of pions generated by collisions of the high-energy particles with the thermal plasma. Cooling of the thermal plasma and dissipation of Alfvén waves in the precursor are important to determine the final amount of the explosion energy ESN which is transferred into cosmic rays.Subject headings: acceleration of particles — cosmic rays — gamma rays: theory — shock waves — supernova remnants

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.