Abstract

: The success of automatic classification is intricately linked with an effective feature selection. Previous studies on the use of genetic programming (GP) to solve classification problems have highlighted its benefits, principally its inherent feature selection (a process that is often performed independent of a learning method). In this paper, the problem of classification is recast as a feature generation problem, where GP is used to evolve programs that allow non-linear combination of features to create superFeatures, from which classification tasks can be achieved fairly easily. In order to generate superFeatures robustly, the binary string fitness characterization along with the comparative partner selection strategy is introduced with the aim of promoting optimal convergence. The techniques introduced are applied to two illustrative problems first and then to the real-world problem of audio source classification, with competitive results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.