Abstract

BackgroundLarge proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as ‘blooms’, providing genetic material for the genesis and evolution of biosynthetic pathways. Furanocoumarins are allelochemicals produced by many of the species in Apiaceaous plants belonging to the Apioideae subfamily of Apiaceae and have been described as being involved in the defence reaction against phytophageous insects.ResultsA bloom in the cytochromes P450 CYP71AJ subfamily has been identified, showing at least 2 clades and 6 subclades within the CYP71AJ subfamily. Two of the subclades were functionally assigned to the biosynthesis of furanocoumarins. Six substrate recognition sites (SRS1-6) important for the enzymatic conversion were investigated in the described cytochromes P450 and display significant variability within the CYP71AJ subfamily. Homology models underline a significant modification of the accession to the iron atom, which might explain the difference of the substrate specificity between the cytochromes P450 restricted to furanocoumarins as substrates and the orphan CYP71AJ.ConclusionTwo subclades functionally assigned to the biosynthesis of furanocoumarins and four other subclades were identified and shown to be part of two distinct clades within the CYP71AJ subfamily. The subclades show significant variability within their substrate recognition sites between the clades, suggesting different biochemical functions and providing insights into the evolution of cytochrome P450 ‘blooms’ in response to environmental pressures.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0396-z) contains supplementary material, which is available to authorized users.

Highlights

  • Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as ‘blooms’, providing genetic material for the genesis and evolution of biosynthetic pathways

  • CYP71AJs isolated from Pastinaca sativa Pastinaca sativa is an Apiaceous plant able to synthesize both linear and angular furanocoumarins

  • In order to decipher the biosynthesis pathway of these molecules at the molecular level, we searched for CYP71AJ orthologous genes in an RNA-seq database generated from mRNA extracted from parsnip eight week old plantlets

Read more

Summary

Introduction

Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as ‘blooms’, providing genetic material for the genesis and evolution of biosynthetic pathways. Two kinds of furanocoumarins are described, which differ by the position of a furan group grafted on a coumarin core molecule either at position C6-C7 for linear molecules or C7-C8 for the angular one (Fig. 1). Due to their chemical structure, the linear molecules are highly toxic to a broad spectrum of predators. Angular molecules are less toxic, the resistance spectrum is expanded when the plants simultaneously produce both linear and angular structures These kinds of molecules have been reported to exist predominantly in Dueholm et al BMC Evolutionary Biology (2015) 15:122

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.