Abstract

We formulate the momentum-space Dokshitzer–Gribov–Lipatov-Altarelli–Parisi (DGLAP) evolution equations for structure functions measurable in deeply inelastic scattering. We construct a six-dimensional basis of structure functions that allows for a full three flavor structure and thereby provides a way to calculate perturbative predictions for physical cross sections directly without unobservable parton distribution functions (PDFs) and without the associated scheme dependence. We derive the DGLAP equations to first non-zero order in strong coupling αs\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha _\ extrm{s}$$\\end{document}, but the approach can be pursued to arbitrary order in perturbation theory. We also numerically check our equations against the conventional PDF formulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call