Abstract

Streptococcus iniae causes severe septicemia and meningitis in farmed fish and is also occasionally zoonotic. Vaccination against S. iniae is problematic, with frequent breakdown of protection in vaccinated fish. The major protective antigens in S. iniae are the polysaccharides of the capsule, which are essential for virulence. Capsular biosynthesis is driven and regulated by a 21-kb operon comprising up to 20 genes. In a long-term study, we have sequenced the capsular operon of strains that have been used in autogenous vaccines across Australia and compared it with the capsular operon sequences of strains subsequently isolated from infected vaccinated fish. Intriguingly, strains isolated from vaccinated fish that subsequently become infected have coding mutations that are confined to a limited number of genes in the CPS (capsular polysaccharide) operon, with the remainder of the genes in the operon remaining stable. Mutations in strains in diseased vaccinated fish occur in key genes in the capsular operon that are associated with polysaccharide configuration (cpsG) and with regulation of biosynthesis (cpsD and cpsE). This, along with high ratios of non-synonymous to synonymous mutations within the CPS genes, suggests that immune response directed predominantly against capsular polysaccharide may be driving evolution in a very specific set of genes in the operon. From these data, it may be possible to design a simple polyvalent vaccine with a greater operational life span than the current monovalent killed bacterins. I investigated antigenic effects of a key CPS biosynthesis gene, cpsG, a putative UDP galactose 4-epimerase that has three sequence types based on the insertion or deletion of the three amino acids leucine, serine and lysine in the substrate binding site of the protein. To elucidate the role of cpsG in CPS biosynthesis and capsular composition, I first prepared isogenic knockout and complemented mutants of cpsG by allelic exchange mutagenesis. Deletion of cpsG resulted in changes to colony morphology and cell buoyant density, and also significantly decreased galactose content relative to glucose in the capsular polysaccharide as determined by GC-MS, consistent with epimerase activity of cpsG. There was also a metabolic penalty of cpsG knockout revealed by slower growth in complex media, and reduced proliferation in whole fish blood. Moreover, whilst antibodies raised in fish against the wild type cross-reacted in whole cell and cps ELISA, they did not cross-opsonise the mutant in a peripheral blood neutrophil opsonisation assay, consistent with reported vaccine escape. We have shown here that mutation in cpsG results in altered CPS composition and this in turn results in poor cross-opsonisation that explains some of the historic vaccination failure on fish farms in Australia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call