Abstract
AbstractBy performing global 1D MHD simulations, we investigate the heating and acceleration of solar and stellar winds in open magnetic field regions. Our simulation covers from photosphere to 20-60 stellar radii, and takes into account radiative cooling and thermal conduction. We do not adopt ad hoc heating function; heating is automatically calculated from the solutions of Riemann problem at the cell boundaries. In the solar wind case we impose transverse photospheric motions with velocity ~1 km/s and period between 20 seconds and 30 minutes, which generate outgoing Alfvén waves. We have found that the dissipation of Alfvén waves through compressive wave generation by decay instability is quite effective owing to the density stratification, which leads to the sufficient heating and acceleration of the coronal plasma. Next, we study the evolution of stellar winds from main sequence to red giant phases. When the stellar radius becomes ~10 times of the Sun, the steady hot corona with temperature 106K, suddenly disappears. Instead, many hot and warm (105– 106K) bubbles are formed in cool (T< 2 × 104K) chromospheric winds because of the thermal instability of the radiative cooling function; the red giant wind is not a steady stream but structured outflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.